Monday, April 22, 2013

Connecting Form and Function: Serial Block-face EM

The retina is a beautiful and wondrous structure, and it has some really weird cells.

Retina by Cajal (source)
Retinal Ganglion Cells (RGC) have all sorts of differentiating characteristics. Some are directly sensitive to brightness (like rods and cones), while some are sensitive to the specific direction that a bar is traveling.

I am discussing really amazing new techniques to see inside cells this month, and have already posted about the magic that is Array Tomography. Today we'll look at another amazing new technique that (like array tomography) combines nano-scale detail with a scale large enough to see many neurons at once. This technique is called Serial Block-face Electron Microscopy (SBEM), and was recently used to investigate how starburst amacrine cells control the direction-sensitivity of  retinal ganglion cells.


Serial Block-face EM (source)

SBEM images are acquired by embedding a piece of tissue (like a retina) in some firm substance and slicing it superthin (like 10s of nanometers thick) with a diamond blade. The whole slicing apparatus is set up directly under a scanning electron microscope, so as soon as the blade cuts, an image is taken of the surface remaining. Then another thin slice is shaved off and the next image is taken, and so on.

Using this technique, Briggman et al. (2011) are able to trace individual neurons and their connections for a (relatively) large section of retina. What is so great about this paper is that before they sliced up the retina, they moved bars around in front of it and measured the directional selectivity of a bunch of neurons. Then, using blood vessels and landmarks to orient themselves, they were able to find the exact same cells in the SBEM data and trace them.

Briggman et al. (2011) Fig1C: Landmark blood vessels
The colored circles above represent the cell bodies and the black 'tree' shape are the blood vessel landmarks.

Once they found the cell bodies, the could trace the cells through the stacks of SBEM data. What is really neat is that you can try your hand at this yourself. This exact data set has been turned into a game called EYEWIRE by the Seung lab at MIT.

Reconstructing the cells, they could not only tell which cells connected to which other cells, but they could also see exactly where on the dendrites the cells connected. This is the really amazing part. They found that specific dendritic areas made synapses with specific cells.

Briggman et al. (2011) Fig4: dendrites as the computational unit

This starburst amacrine cell overlaps with many retinal ganglion cells (dotted lines represent the dendritic spread of individual RGCs)...BUT its specific dendrites (left, right, up down etc) synapse selectively onto RGCs sensitive to a particular direction. Each color represents synapses onto a specific direction-sensitivity. e.g. yellow dots are synapses from the amacrine cell onto RGCs which are sensitive to downward motion.

This suggests that each individual dendritic area of these starburst amacrine cells inhibits (probably) a specific type of RGC, and that these dendrites act relatively independently of one another.

"The specificity of each SAC dendritic branch for selecting a postsynaptic target goes well beyond the notion that neuron A selectively wires to neuron B, which is all that electrophysiological measurements can test. Instead the dendrite angle has an additional, perhaps dominant, role, which is consistent with SAC dendrites acting as independent computational units."  -Briggman et al (2011)(discussion)

These cells are weird for so many reasons, but the ability of the dendrites to act so independently of one another is a new and exciting development that I hope to see more research on soon.

© TheCellularScale


ResearchBlogging.org
Briggman KL, Helmstaedter M, & Denk W (2011). Wiring specificity in the direction-selectivity circuit of the retina. Nature, 471 (7337), 183-8 PMID: 21390125

No comments:

Post a Comment